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We prove a global inverse result for simultaneous approximation by modified
Bernstein operators as introduced by Durrmeyer in 1967. The main result of this
note supplements and extends an earlier direct theorem of Heilmann and Miiller
and is given in terms of the so-called Ditzian-Totik modulus of second order.
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1. INTRODUCTION

The classical Bernstein operators are of the form

where

n'
Pn,k(X) = k !(n ~ k)! xk(l - X)"-k,
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AGLOBAL INVERSE THEOREM 285

There are two modifications of the Bernstein polynomials for the
approximation of Lp functions, 1~P < 00, which have attracted particular
interest over the recent years. The first is given by Kantorovich operators
B:; which are obtained if one replaces f(k/n) by

f
(k+ l)/(n+ 1)

(n + 1) f(t) dt.
k/(n+ 1)

See [6J and the references cited there for details.
The other modification is an operator sequence introduced by

Durrmeyer [7J and, independently, by Lupa§ [11, p. 68]. Here, f(k/n) is
replaced by

(n + 1)rPn,k(t) f(t) dt,
o

so that one arrives at

Mn(f; x) = (n + 1) ±Pn,k(X)rPn,k(t) f(t) dt.
k~O 0

The M n were studied by Derriennic [3, 4J and several other authors. It
turned out that the approximation properties of both B:; and M n are some
what similar.

Writing L n for either B:; or M n , the following statements hold:

THEOREM A (See [5, 17]), Let 1~P< 00, Then,for O<cx<2,

if and only if

w~(f, t)p = O(t<l).

Here

w;(f, t)p = sup 11L1~<p lip,
O<h~1

with

is the so-called Ditzian-Totik modulus of smoothness.
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For the saturation case one has

THEOREM B (See [8, 12-14, 16]).

IILnf - fll p = O(n- 1
)

if and only if
(1 ) for 1 < p < 00

(2) for p= 1

f(x)=K+ J; t(~~t)dt
with yE(O, 1) and h(O)=h(l)=O, hEBV(I).

a.e. on I,

It would be desirable to have a more uniform description of the non
optimal and the saturation cases. However, as was shown by Totik [15],
the condition given in Theorem B for p = 1 and

are not equivalent.
It is the aim of the present paper to show that one gets a more elegant

characterization (at least for the operators M n ) if one considers
simultaneous approximation. The direct part of the result below was, for
the most part, established in a recent paper by Heilmann and Muller [9].
They stated, however, that they were unable to prove the inverse theorem
for non-weighted global approximation. This will be done below. To be
more specific, we shall show, among other results, that, for 1 ,,;; s fixed, one
has for l,,;;p < 00 the following equivalence (see the Theorem below):

For 0< IX ,,;; 2, 0,,;; f3 < 00,

Thus, not only is it true that there is a more elegant result for simultaneous
approximation, but we can also characterize more classes of functions by
the result of this note.
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2. AUXILIARY RESULTS

287

IffE L;(I), 1~P ~ 00, n > s, then it was shown by Derriennic [4, p. 334]
that

(M"f)(s) (x) = (n + 1) cx(n, s) "f P,,-s,k(X)rPn+s,k+s(t) jCs)(t) dt
k~O 0

with

(n !)2
cx(n,s)=( _ )1( )1n s. n+s.

Heilmann and Mtiller [9] introduced the auxiliary operators

(M",sh )(x) = (n + 1) cx(n, s) "is P" _ s,k(X)rP" + s,k +s(t) h(t) dt, hE Lp(I).
k~O 0

They used the equality

and mentioned that for hE Lp(I), n > s,

with a constant C independent of nand p.
While these results will be useful for us in the sequel, for convenience we

summarize some further results which can be found in [5, 10] or can be
obtained using similar methods.

Note first that, for cp(x) = (x( 1 - x) )1/2, the following relationships hold
true:

cp4(X) P,,-s-2,k(X) P,,+s+2,k+s+2(t)

~ cp2(X) cp2(t) Pn-s,k+ I(X) P,,+s,s+k+ l(t)

~ cp4(t) P,,-s+2,k+2(X) P,,+s-2,k+s(t), (1)
, (k-nx)

P",k(X)= cp2(X) P",k(x)=n(p,,-I,k_l(X)-P,,_I,k(X)), (2)

and, for suitably chosen F,

I
ds+2 I

cp2(X) dxs+2M,,(F; x)

,,-s-2 1

~ Cn I P,,-s,k+ I(X) f P,,+s,k+s+ j(t) cp2(t) IF(s+2)(t)! dt. (3)
k~O 0
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Let ak = HPn+s,k+s(t) F(s)(t) dt and Llak = ak+ 1 - ak' Then, for n ~ s + 2,

(4)

(5)

Here A '" B means that there exists a constant C> 0, such that

C- 1 IBI ~ IAI ~ C IBI·

Let N; E N, IN; 1< C, i = 1, ..., 5, and mE No be fixed. Then

~C(,+~r·
The following lemma can be found in [18]; its proof can be carried out

similarly as in [1].

LEMMA 1. Let U1(x), U2(x) be non-negative increasing functions, r>O,
C> 1. If for all 0< t, h ~ 1 one has

then

U (h):< A {h r - 1/2 fl U2(t) dt + hr - 1/2 }
1 "" h t r + 1 - 1/2 ,

where A depends on C, U1(1) and U2(1).

Putting En= [1/(n+e), 1-1/(n+e)] for some fixed e>O (e not being
the same at each occurrence), we have

LEMMA 2. For xEEn, let q>n(x)=q>(x)/j;?,. Then

j= 1, 2, ...

Proof For j= 1, (2) implies the above. If it is true for j=jo, then for
j=jo+ 1. Since
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That is what we want. I

LEMMA 3. For 1 ~P ~ 00, the following inequalities holds:

289

Ilcp2iM~:~)(f)llp ~ C Ilcp21{2i)llp ,

Ilcp2iM~:~)(f)llp ~ Cni Ilfll p ,

where i = 1, 2.

cp 21(2i) E Lp(I),

fE Lp(I),

(6)

(7)

(8)

Proof Because the remaining inequalities can be shown in the same
way, we only prove (6) and (7) for i= 1. We first represent M~,if) using
M w Let F be such that F(s) = f. Then

Mn,s(f) = (MnF)(s),

or

Using (3), one gets

Ilcp2M~)f)11 00 ~ Cn r~t~2 Pn-s,k+ l(X) n + ~ + 1LIlcpY"lloo

~C Ilcp 2f"1100'
Furthermore, for P = 1,

IIcp2M~,s(f)111

1 n - s - 2 1

~Cn i L Pn-s,k+1(X) i Pn+s,s+k+1(t) Icp2(t)f"(t)1 dtdx
o k~O 0

1 n - s - 2

~ Cr L Pn+s,s+k+ 1(t) Icp2(t) f"(t)1 dt ~ CIlcp2f"1I1'
JO k=O

640/67/3-5
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Hence, by the Riesz-Thorin theorem [2], it follows that

1~P~ 00.

In order to prove (7) for i = 1, we use (4) to obtain

C II n-s-2
~-n3 L Pn-s-2,k(X)

n k=O

x max flpn+s,A+s(t)I/(t)ldtll ~Cnll/lioo'
k';;'A';;'k+2 0 Loo(E~)

On the other hand, inside En we have

IM~j/)(x)1 ~ Cn ni
s
P~-s,k(X)rPn+s,k+s(t) I/(t)1 dt,

k~O 0

and

Using Lemma 2 and the fact that, for i E No and x E En,

we get

Combining the estimates for E~ and En shows that

11<p2M~)I)1I00 ~ Cn 11/11 00'

Next we show the analogous inequality for P = 1. Consider again E~ first:
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But

and so

IIcp2M~jf)11 Ll(E~)

n-s-2 1

~Cn2 f L: max f Pn+sH2(t) I/(t)1 dtdx
E~ k~O h,..t<;;k+2 0 '

~ Cn
2 11/111 L~ dx ~ Cn 11/111'

For x E En we have (see the L oo case)

Icp2(x)M~jf)(x)1 ~Cn2 :~: ito n
i
/
2

In:s -xr
x cp-i(X) Pn-s,k(X)rPn+s,k+s(t) I/(t)1 dt.

o

Hence, by [6, p. 129J one has

Ilcp2M~j/)IILl(En)~Cn2 :~: ito n
i
/
2Ln In:s -xr

. r l

x cp-I(X) Pn-s,k(X) dx J Pn+s,k+s(t) I/(t)1 dt
o

~ Cn 11/111'

Combining again the inequalities for E~ and En, we obtain

II cp2M~,s(f) 111 ~ Cn 11/111,

291

and combining this with the estimate for P = 00, the Riesz-Thorin theorem
implies

That is (7). I
Let

Hn,m(u)=n (fr-rf) (u-t)m
u 0 0 u

n+Nl
X L: Pn+Nz,k+NJ(X) Pn+N4,k+N5(t) dt dx,

k=O
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with m, N;, i= 1, 2, ..., 5, as in (5). Since Pn,j(x) =O,j>n, we may suppose
N 1 +N 3 ~ N 2 • We have

LEMMA 4. There exists a constant C> 0, such that

(
qJ(U) l)m+l

IHn,m(u)1 ~ C .fiz +;; .

Proof We write Hn,m(u) as

Hn,m(U)=n(( r-r()dtdx=n(-( (+ (()dtdX.
0000 Ou uO

Using the fact that (n + 1) g Pn,k(X) dx = 1 and changing the order of
integration, then integrating by parts and by (2), we have

n+N4 {II IIH n,m(u)=n--
1

dx (u_t)m+l
m+ u 0

n+Nl
X L Pn+N2,k+N3(x){Pn-N4-1,k+Ns-l(t)

k= -Ns+ 1

n+Nl 1

X L I (u_t)m+l {Pn+N4-1,k+Ns-l(t)
k=O u

-NS

X L Pn+N2,k+N3(X) Pn+N4,k+Ns(t) dt.
k=O

But Pn,j(x) = 0, if j < 0. So if N s~°
1 1 -Ns

n f dx f (u- t)m L Pn+N2,k+N3(X) Pn+N4,k+Ns(t) dt
u 0 k~O

(9)
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Thus, if N 3 - N s< 0, the last integral equals zero. If °~ N 3 - N s, then,
since

and for fixed N, uN(l- uy-N ~ Cn- N, we obtain

(

lp(U) l)m+ 1
~C r.::+- .

...;n n

If N s > 0, by the same reasoning as above, we have also the same estimate.
For the second part of (9), we have

n+Nj 1

L f (U - t)m+ 1 {Pn+ N4-1,k+Ns-l(t) - Pn+ N4-1,k+ Ns(t)} dt
k~O u

On the other hand, using the Abel transformation and (2) for the first part
of (9), it is not difficult to obtain that

n+Nj

L Pn+Nz,k+ N3(X){Pn+ N4-1,k+ Ns-l(t) - Pn+N4-1,k+ Ns(t)}
k~ -Ns+ 1

= -Pn+Nz,n+Nj+N3(X) Pn+N4-1,n+Nl+Ns(t)

+Pn+Nz,N3-NS(X) Pn+N4-1,O(t)

1 n+Nj-l

n+N +1 L Pn+N4-1,k+Ns(t)Pn+N2+1,k+N3+1(X).
2 k~ -Ns
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Thus it follows that
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n+Nj -1
X L P~+N2+1,k+N3+ 1(X) Pn+N4- 1,k+NS(t) dt
k~ -Ns

((
qJ(U) 1)m+1)+0 -+- .--fin

Direct computation shows that

Therefore, since N 2+ 1> N 1+ N 3 ,

H () n(n+N4 ) f1 d f1( )m+1
n,m u =-(m+l)(n+N2+1) u x 0 u-t

n+Nl+ NS- 1
L Pn+N2+1,k- Ns+N3+ 1(u)
k~O

((
qJ(U) 1)m+1)+0 -+- .--fin

Now, using (5), we get the assertion of this lemma. I
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Defining

M(v)=n nfs Pn-s,k(V)rPn+s,k+s(t)r(t-U)3 j(4)(u)dudt,
k=O 0 x

we prove

LEMMA 5. For 1~P ~ 00 there holds

295

Proof From [6, p. 141]) it is known that

If'(t- )3 j(4)( )d I~{(t-X)4<p-4(X)M(<P:r(4))(X),
x u u u '" (t-X)4 M(j(4))(X),

Here M(F)(x) is the Hardy-Littlewood function of F. Thus we have the
inequality of this lemma for 1<P ~ 00, using the Hardy-Littlewood
inequality, Lemma 2 for x E En, and the fact that 1<p(x)1 ~ Cln for x E E~

and (5).
If P = 1, then

IIM(x)111 ~ n II :~~ Pn-s,k(X) ( Pn+s,k+s(t) { (t - U)3 IP4)(u)1 du dt 111

=nrIj(4)(u)1 {fr-rr}
o 0 0 0 0

n-s
x (u - t)3 L Pn-s,k(X) Pn+s,k+s(t) dt dx duo

k~O

By (2),

11 d I I n-s 1~ dv M(v) v~x ~ Cn k~O Pn-s-1,k(X) fa {Pn+s,k+s(t)

+Pn+s,k+s-1(t)}r(t-u)3Ij(4)(u)1 dudt.
x

We thus get
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111 d I II- -M(v)
n dv v~x 1

~ Cn {( IP4)(u)1 {( J: - J: J: } (U - t)3

n-s
x I Pn_S_l,k(X)Pn+s,k+s(t)dtdxdu
k~O

x nIs Pn-s-l,k(X) Pn+s,k+s-l(t) dt dx dU}.
k=O

Using (3), we obtain

<p2(X) Id
2

2M(V)I I
n dv v~x

n-s-2 1 t

~c I Pn-s,k+l(X) f Pn+s,k+s+l(t) <p2(t) f (t-u) If(4)(u)1 dudt.
k~O 0 x

So, like in [10],

1 II d

2

1 II- <p(X) -2 M(v)
n dv v~x L[O,1/2]

~ C {( If(4)(u)1 <p2(U) {( J: - J: (} (U - t)

n-s-2

X I Pn-s,k+ l(X) Pn+s,k+s+ l(t) dt dx du
k=O

x n-±-2 Pn-s-2,k(X) Pn+s+2,k+s+2(t) dt dx dU}.
k~O

The same estimate holds also for XE [1/2,1]. Now, using Lemma 4, we
obtain the claim of Lemma 5. I

We introduce the auxiliary operator L n defined by
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where

n+s+l
C =----

n (n+l)ct(n,s)

This operator L n satisfies an inequality as given in

LEMMA 6. For 1~p ~ 00,

Proof Note first that

297

2. _ 2 ( 1 )Ln(t ,x) - x + 0 n2 •

By Lemma 3, Ln is a bounded linear operator from Lp(I) into Lp(I). Since
for a polynomial P with degree not larger than [~], Ln(P) is also a poly
nomial of the same degree, by [6, p. 91 J one has

On the other hand, using Taylor's formula, we get

IILn(P) - Pllp

~ c {IIP"II Lp(En) :2 + IILn«t - . )3)p(3l ll Lp(Enl + IILn(R)11 Lp(En)}'

Here,

It is easy to calculate that (see [9J)

ILn((t - X)3; x)1 ~ c {I Mn.s((t - X)3; x)\ + <p2~X) \M~.s«t - X)3; u) \u=x \

1 I 3. } (<p2(X) 1)+-IMns((t-x) ,u)lu=xl ~ c -2-+"4 .n . n n

Thus, since xEEn , we have (see [6, p. 135])

IILn((t - . )3)p(3)11 Lp(En)~ II :: p(3)t~ ~ (11<p4p(4)lI p+ IIPll p )'
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By Lemma 5 we obtain, because P is a polynomial of degree not larger
than [~J, and C/n,,;;.cp2(x) for xEEn ,

IILn(R)ll p~ c {:2 IIP(4)<jJ41Ip+ n~ IIP(4)llp}

{
I (4) 4 I (4)\ }

~ C n2 liP <jJ lip + n4 liP ILp(En )

~ c {:21Icp4P(4)llp}.

In order to estimate IIP"IILp(En)' observe that, if 1~p < 00, then (see
[6, p. 135J)

If p = 00, we write

!P"(X) - P" G)I~ 1(/2 p(3)(U) dul ~ cp~) Ilcp 3p(3)llw,

and use the estimate

IP"WI ~Cn IIPlloo,

which is valid for P E II [.fil]. Therefore,

\ IIP"IILoo(E")~ ~ {n IIPllw +n 1
/
2 1Icp3P(3)llw}

n n

Hence, for 1~p < 00,

and for p = 00,

) {
II 3 (3) 1 4 (4) }IILn(P -Pllw~C -IIPlloo+3i2llcp P Ilw+21lcp P 1100 .
n n n

Now, let P satisfy (see [6, p. 84J)

IIP- Illp~ CE[.fil/I)~ Cw~ (I, ~)/
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i= 3, 4.
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3. MAIN RESULT

We are now ready to prove the main result of this paper. It will be
formulated in terms of a function w having properties similar to those
of a second order modulus of continuity, namely that w is increasing such
that

0::'; w(kt)::,; Aew(t) for t > 0 and kEN.

The theorem below supplements and extends the direct theorem given by
Heilmann and Muller [9] as indicated in the introduction.

THEOREM. Let l::,;s andfEL;(I), 1 ::';p< 00. Then

if and only if

where C = Cf is independent of t (and n).

Proof (<=) It was shown in [9, Theorem 3.1 ] that, for 1 ::';p < 00,

II (Mn(f) - f)(s)ll p ::'; C {w~ (f(S), ~) +~ Ilfll p }

::,; C {w (~) +~}.

(=) The only case of interest is the one in which Ct 2 ~ w(t). We
assume that
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Thus, since 11- Cn1< C/n,

IICnMn,s(f(s))- f(s)llp~ Cn II(Mn(f)- f)(S)ll p+ 11- Cnlllf(s)ll p

~Cco(~).

Furthermore,

Lemma 3 shows that, for any g(s) E L;(I),

(10)

Taking the inf over g(s) E L;(I) and using the equivalence of K-functionals
and corresponding moduli of smoothness (see [6, p. 11]), by the above
condition on co, we get

co~(f(S), t)p~ C {co (~) + t4n2co~ (f(s!, ~)J'

Now, Lemma 1 implies

Using Marchaud's inequality and by the condition on co this implies

Combining this with (10) it follows from Lemma 6 that

If we can prove that

then,

(12)
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Thus, using the equivalence of the K-functional and the modulus of
smoothness (see [6, p. 11 J), we obtain

w~(f(S), t)p ~ Cw(t).

Hence, we only have to prove (12). In order to do this, we write
g= Mn,s(f(s)) and

h(x) = cp2g" + (s + 1)(c(2)' g' = (cp2) -s (g'( (p2),+ 1 y.

(11) shows Ilhllp ~ Cnw(I/~). Furthermore,

1 IXg'(x) = cp2s+2 0 h(t) cp2S(t) dt.

So, by Hardy's inequality, we have for 1 < p < 00

II

cp2S(X) IX II
Ilg'IILp[0,1/2] ~ 2s+2() Ih(t)1 dt I ~ C Ilhllp.

cp x 0 Lp[O, 1/2]

For p = 1, by changing the order of integration, one gets

f
1/ 2 1 fX

Ilg'IIL[O,1/2]~ 0 cp2s+2(X) 0 Ih(t)1 cp2s(t)dtdx

f
1/2 f1/2 tS

~ 2 Ih(t)1 ~ dx dt.
o t x

Since 1~ s, we obtain

In the same way one can show that

Thus, for all 1~p < 00,

II g'llp~ C Ilhllp'

That implies (12) and the proof is complete. I
Remark. In case p = 00, we are able to prove the direct theorem (e.g.,

using Lemma 3 and Lemma 6)
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Thus, using the same method as in the proof of the theorem, we have

if and only if
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